Recent joint multiple intent detection and slot filling models employ label embeddings to achieve the semantics-label interactions. However, they treat all labels and label embeddings as uncorrelated individuals, ignoring the dependencies among them. Besides, they conduct the decoding for the two tasks independently, without leveraging the correlations between them. Therefore, in this paper, we first construct a Heterogeneous Label Graph (HLG) containing two kinds of topologies: (1) statistical dependencies based on labels' co-occurrence patterns and hierarchies in slot labels; (2) rich relations among the label nodes. Then we propose a novel model termed ReLa-Net. It can capture beneficial correlations among the labels from HLG. The label correlations are leveraged to enhance semantic-label interactions. Moreover, we also propose the label-aware inter-dependent decoding mechanism to further exploit the label correlations for decoding. Experiment results show that our ReLa-Net significantly outperforms previous models. Remarkably, ReLa-Net surpasses the previous best model by over 20\% in terms of overall accuracy on MixATIS dataset.
翻译:近期联合多重意图探测和空档填充模型采用标签嵌入方式来实现语义标签-标签互动。 但是, 它们将所有标签和标签嵌入方式都视为不相干的个人, 忽略它们之间的依赖性。 此外, 它们独立地为这两项任务解码, 而没有利用它们之间的关联。 因此, 在本文中, 我们首先构建一个包含两种类型地形的异质标签间隔层图( HLG ) :(1) 根据标签的共同发生模式和职位标签标签标签分类的统计依赖性; (2) 标签节点之间的丰富关系。 然后我们提出一个名为 ReLa- Net 的新颖模型。 它可以捕捉HLG 的标签之间的有益关联性。 标签的关联性被用来加强语义标签- 标签的相互作用。 此外, 我们还提出一个标签认知的相互依存解码解密机制, 以进一步利用标签的解码关联性。 实验结果显示, 我们的ReLa- Net 明显超越了先前的模型。 值得注意的是, ReLa- Net 超越了前一个模型在20x 总体数据精确度上的最佳模型。