项目名称: 基于超图谱分析的图像分类方法研究
项目编号: No.61272223
项目类型: 面上项目
立项/批准年度: 2013
项目学科: 自动化技术、计算机技术
项目作者: 刘青山
作者单位: 南京信息工程大学
项目金额: 81万元
中文摘要: 图模型是图像分析中常用的分析工具之一,因为它可以直观的描述图像数据之间的关系。但是传统图结构通常是以两两数据间的相似度连接来构建图结构中的边,忽略了数据间的高阶信息,而这些高阶信息实际上对于图像分类来说是非常有用的。本项目拟研究基于超图谱分析的图像分类方法。不同于传统图结构,超图的超边是数据中具有某种相似属性的子集来描述,因此可以描述数据间的高阶信息。本项目的主要研究内容包括:如何更有效的描述图像的视觉信息、如何构建基于超图谱分析的图像分类框架、超图谱分析的优化求解、以及超图谱分析在图像序列分类中的扩展等,并基于研究成果搭建场景分类的原型系统。
中文关键词: 特征表示;稀疏低秩学习;超图学习;深度学习;稀疏优化
英文摘要: Graph Model is a popular tool for image analysis, because it can describe the relationship among the images intuitively. However, traditional graph stucture takes the pair-wise similarity between two images as the edge, so it ignores the high-order information among the images, which is actually very important to image classification. This project aims to study hypergraph based image classification. Different from traditional graph, hyperedge in hypergraph is composed of a subset of the data with same attribute, so hypergraph has a property of decribing high-order information. The main researh contents includs: how to extract efficient visual cues from image, how to build the hypergraph based image classification framework, the optimal solution of hypergraph spectral analysis, and how extend to image sequence classification, ect. We will also build a Demo system of scene classification based on the research results.
英文关键词: feature representation;sparse and low rank learning;hypergraph learning;deep learning;sparse optimization