Laplace approximations are classic, computationally lightweight means for constructing Bayesian neural networks (BNNs). As in other approximate BNNs, one cannot necessarily expect the induced predictive uncertainty to be calibrated. Here we develop a formalism to explicitly "train" the uncertainty in a decoupled way to the prediction itself. To this end, we introduce uncertainty units for Laplace-approximated networks: Hidden units associated with a particular weight structure that can be added to any pre-trained, point-estimated network. Due to their weights, these units are inactive -- they do not affect the predictions. But their presence changes the geometry (in particular the Hessian) of the loss landscape, thereby affecting the network's uncertainty estimates under a Laplace approximation. We show that such units can be trained via an uncertainty-aware objective, improving standard Laplace approximations' performance in various uncertainty quantification tasks.
翻译:Laplace近似值是典型的,计算上轻巧的建立巴伊西亚神经网络的手段。与其他近似巴伊西亚神经网络(BNNS)一样,人们不一定会期望对诱发的预测不确定性进行校准。在这里,我们发展了一种形式主义,以明确“训练”与预测本身脱钩的方式对不确定性进行分解。为此,我们为拉贝氏相近的网络引入了不确定性单位:与特定重量结构相关的隐藏单位,可以添加到任何预先训练的、点估计的网络中。由于它们的重量,这些单位没有活动,它们并不影响预测。但是它们的出现改变了损失地貌的几何学(特别是赫西安),从而影响了拉比特近距离下的网络不确定性估计。我们表明,可以通过不确定性目标来培训这些单位,提高标准拉比近值在各种不确定性量化任务中的性能。