Laplace approximations are classic, computationally lightweight means for constructing Bayesian neural networks (BNNs). As in other approximate BNNs, one cannot necessarily expect the induced predictive uncertainty to be calibrated. Here we develop a formalism to explicitly "train" the uncertainty in a decoupled way to the prediction itself. To this end, we introduce uncertainty units for Laplace-approximated networks: Hidden units associated with a particular weight structure that can be added to any pre-trained, point-estimated network. Due to their weights, these units are inactive -- they do not affect the predictions. But their presence changes the geometry (in particular the Hessian) of the loss landscape, thereby affecting the network's uncertainty estimates under a Laplace approximation. We show that such units can be trained via an uncertainty-aware objective, improving standard Laplace approximations' performance in various uncertainty quantification tasks.


翻译:Laplace近似值是典型的,计算上轻巧的建立巴伊西亚神经网络的手段。与其他近似巴伊西亚神经网络(BNNS)一样,人们不一定会期望对诱发的预测不确定性进行校准。在这里,我们发展了一种形式主义,以明确“训练”与预测本身脱钩的方式对不确定性进行分解。为此,我们为拉贝氏相近的网络引入了不确定性单位:与特定重量结构相关的隐藏单位,可以添加到任何预先训练的、点估计的网络中。由于它们的重量,这些单位没有活动,它们并不影响预测。但是它们的出现改变了损失地貌的几何学(特别是赫西安),从而影响了拉比特近距离下的网络不确定性估计。我们表明,可以通过不确定性目标来培训这些单位,提高标准拉比近值在各种不确定性量化任务中的性能。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年7月28日
Arxiv
0+阅读 · 2021年7月28日
Arxiv
0+阅读 · 2021年7月27日
Arxiv
30+阅读 · 2021年7月7日
A Probe into Understanding GAN and VAE models
Arxiv
9+阅读 · 2018年12月13日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员