We consider a bilevel continuous knapsack problem where the leader controls the capacity of the knapsack and the follower chooses an optimal packing according to his own profits, which may differ from those of the leader. To this bilevel problem, we add uncertainty in a natural way, assuming that the leader does not have full knowledge about the follower's problem. More precisely, adopting the robust optimization approach and assuming that the follower's profits belong to a given uncertainty set, our aim is to compute a solution that optimizes the worst-case follower's reaction from the leader's perspective. By investigating the complexity of this problem with respect to different types of uncertainty sets, we make first steps towards better understanding the combination of bilevel optimization and robust combinatorial optimization. We show that the problem can be solved in polynomial time for both discrete and interval uncertainty, but that the same problem becomes NP-hard when each coefficient can independently assume only a finite number of values. In particular, this demonstrates that replacing uncertainty sets by their convex hulls may change the problem significantly, in contrast to the situation in classical single-level robust optimization. For general polytopal uncertainty, the problem again turns out to be NP-hard, and the same is true for ellipsoidal uncertainty even in the uncorrelated case. All presented hardness results already apply to the evaluation of the leader's objective function.


翻译:我们认为一个双层连续的背包问题,即领导人控制了背包的能力,而追随者则根据自己的利润选择了一种最佳包装,这与领导者不同。对于这个双层问题,我们自然地增加了不确定性,假设领导者对随从问题没有完全了解。更确切地说,采取强力优化办法,假设随从者的利润属于特定不确定因素组,我们的目标是从领导人的角度计算出一种解决办法,使最坏情况随从者的反应达到最佳效果。通过调查这一问题对不同类型不确定因素的复杂性,我们采取初步步骤,更好地了解双层优化和稳健组合优化的结合。我们表明,问题可以在多种时间里解决,既可以解决离散的,也可以解决间隔的不确定因素。但是,当每个系数独立地只假定一定的数值时,同样的问题就会变得难以解决。这特别表明,用它们的同级船体来取代不确定因素组的反应可能会大大改变问题,这与传统的单一级和一级目标的情况不同,因此一般的不确定因素会变成稳定因素。

0
下载
关闭预览

相关内容

让 iOS 8 和 OS X Yosemite 无缝切换的一个新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source: Apple - iOS 8
专知会员服务
16+阅读 · 2021年9月17日
【CVPR2021】反事实的零次和开集识别
专知会员服务
25+阅读 · 2021年5月7日
专知会员服务
141+阅读 · 2021年3月17日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年9月24日
Arxiv
0+阅读 · 2021年9月23日
VIP会员
相关VIP内容
专知会员服务
16+阅读 · 2021年9月17日
【CVPR2021】反事实的零次和开集识别
专知会员服务
25+阅读 · 2021年5月7日
专知会员服务
141+阅读 · 2021年3月17日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员