Gradient boosting is a prediction method that iteratively combines weak learners to produce a complex and accurate model. From an optimization point of view, the learning procedure of gradient boosting mimics a gradient descent on a functional variable. This paper proposes to build upon the proximal point algorithm, when the empirical risk to minimize is not differentiable, in order to introduce a novel boosting approach, called proximal boosting. Besides being motivated by non-differentiable optimization, the proposed algorithm benefits from algorithmic improvements such as controlling the approximation error and Nesterov's acceleration, in the same way as gradient boosting [Grubb and Bagnell, 2011, Biau et al., 2018]. This leads to two variants, respectively called residual proximal boosting and accelerated proximal boosting. Theoretical convergence is proved for the first two procedures under different hypotheses on the empirical risk and advantages of leveraging proximal methods for boosting are illustrated by numerical experiments on simulated and real-world data. In particular, we exhibit a favorable comparison over gradient boosting regarding convergence rate and prediction accuracy.


翻译:梯度递增是一种预测方法, 迭代地将弱学习者结合成一个复杂而准确的模型。 从优化的角度看, 梯度递增的学习程序在功能变量上模仿梯度递减。 本文建议, 当实验性最小化的风险无法区分时, 以近似点算法为基础, 以便引入一种新型推增方法, 称为准度递增。 除了由非差异性优化驱动之外, 拟议的算法改进, 如控制近似错误和 Nesterov 加速等, 也如同梯度推增一样 。 这导致两种变式, 分别称为剩余准振动和加速准度振动。 在关于实验性风险和运用准度推动方法的优势的不同假设下, 最初两种程序理论趋同得到了证明。 在模拟数据和现实世界数据上的数字实验可以说明, 我们展示了一种对加速度加速度的有利比较。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
52+阅读 · 2020年11月3日
专知会员服务
44+阅读 · 2020年10月31日
专知会员服务
52+阅读 · 2020年9月7日
最新《序列预测问题导论》教程,212页ppt
专知会员服务
84+阅读 · 2020年8月22日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
11+阅读 · 2019年5月6日
【泡泡一分钟】用于评估视觉惯性里程计的TUM VI数据集
泡泡机器人SLAM
11+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【泡泡一分钟】用于平面环境的线性RGBD-SLAM
泡泡机器人SLAM
6+阅读 · 2018年12月18日
自定义损失函数Gradient Boosting
AI研习社
12+阅读 · 2018年10月16日
Structure Learning for Directed Trees
Arxiv
0+阅读 · 2021年9月28日
Arxiv
0+阅读 · 2021年9月27日
Arxiv
4+阅读 · 2021年7月1日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
52+阅读 · 2020年11月3日
专知会员服务
44+阅读 · 2020年10月31日
专知会员服务
52+阅读 · 2020年9月7日
最新《序列预测问题导论》教程,212页ppt
专知会员服务
84+阅读 · 2020年8月22日
相关资讯
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
11+阅读 · 2019年5月6日
【泡泡一分钟】用于评估视觉惯性里程计的TUM VI数据集
泡泡机器人SLAM
11+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【泡泡一分钟】用于平面环境的线性RGBD-SLAM
泡泡机器人SLAM
6+阅读 · 2018年12月18日
自定义损失函数Gradient Boosting
AI研习社
12+阅读 · 2018年10月16日
Top
微信扫码咨询专知VIP会员