Calibration of a typical radio interferometric array yields thousands of parameters as solutions. These solutions contain valuable information about the systematic errors in the data (ionosphere and beam shape). This information could be reused in calibration to improve the accuracy and also can be fed into imaging to improve the fidelity. We propose a distributed optimization strategy to construct models for the systematic errors in the data using the calibration solutions. We formulate this as an elastic net regularized distributed optimization problem which we solve using the alternating direction method of multipliers (ADMM) algorithm. We give simulation results to show the feasibility of the proposed distributed model construction scheme.


翻译:对典型的无线电干涉测量阵列进行校准,得出数千项参数作为解决办法。这些解决办法包含关于数据系统错误(电离层和波束形状)的宝贵信息。这种信息可以在校准中再利用,以提高准确性,也可以输入成像,以提高忠诚性。我们提出了一个分布式优化战略,用校准解决方案构建数据系统错误的模型。我们将此设计成一个弹性网,固定分布式优化问题,我们用乘数法交替方向方法解决。我们用模拟结果来显示拟议的分布式模型构建计划的可行性。

0
下载
关闭预览

相关内容

专知会员服务
162+阅读 · 2020年1月16日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
【泡泡一分钟】基于运动估计的激光雷达和相机标定方法
泡泡机器人SLAM
25+阅读 · 2019年1月17日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
4+阅读 · 2019年1月14日
Arxiv
4+阅读 · 2018年1月15日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
【泡泡一分钟】基于运动估计的激光雷达和相机标定方法
泡泡机器人SLAM
25+阅读 · 2019年1月17日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员