Calibration of a typical radio interferometric array yields thousands of parameters as solutions. These solutions contain valuable information about the systematic errors in the data (ionosphere and beam shape). This information could be reused in calibration to improve the accuracy and also can be fed into imaging to improve the fidelity. We propose a distributed optimization strategy to construct models for the systematic errors in the data using the calibration solutions. We formulate this as an elastic net regularized distributed optimization problem which we solve using the alternating direction method of multipliers (ADMM) algorithm. We give simulation results to show the feasibility of the proposed distributed model construction scheme.
翻译:对典型的无线电干涉测量阵列进行校准,得出数千项参数作为解决办法。这些解决办法包含关于数据系统错误(电离层和波束形状)的宝贵信息。这种信息可以在校准中再利用,以提高准确性,也可以输入成像,以提高忠诚性。我们提出了一个分布式优化战略,用校准解决方案构建数据系统错误的模型。我们将此设计成一个弹性网,固定分布式优化问题,我们用乘数法交替方向方法解决。我们用模拟结果来显示拟议的分布式模型构建计划的可行性。