We consider distributed stochastic variational inequalities (VIs) on unbounded domains with the problem data that is heterogeneous (non-IID) and distributed across many devices. We make a very general assumption on the computational network that, in particular, covers the settings of fully decentralized calculations with time-varying networks and centralized topologies commonly used in Federated Learning. Moreover, multiple local updates on the workers can be made for reducing the communication frequency between the workers. We extend the stochastic extragradient method to this very general setting and theoretically analyze its convergence rate in the strongly-monotone, monotone, and non-monotone (when a Minty solution exists) settings. The provided rates explicitly exhibit the dependence on network characteristics (e.g., mixing time), iteration counter, data heterogeneity, variance, number of devices, and other standard parameters. As a special case, our method and analysis apply to distributed stochastic saddle-point problems (SPP), e.g., to the training of Deep Generative Adversarial Networks (GANs) for which decentralized training has been reported to be extremely challenging. In experiments for the decentralized training of GANs we demonstrate the effectiveness of our proposed approach.


翻译:我们考虑非平凡区域上的分布式随机变分不等式,在该问题数据是异质的(非 IID),并分布在许多设备上。我们对计算网络做了一个非常普遍的假设,包括时间变化的网络和在联邦学习中常用的集中式拓扑结构。此外,可以在工作节点上进行多次本地更新,以减少工人之间的通信频率。我们将随机外推法扩展到这个非常普遍的设置中,并理论分析其在强单调、单调和非单调情况下的收敛速率(当Minty解存在时)。所提供的速率明确展示了网络特征(例如混合时间)、迭代计数器、数据异质性、方差、设备数量和其他标准参数的依赖关系。作为一个特例,我们的方法和分析适用于分布式随机鞍点问题(SPP),例如用于训练分布式生成对抗网络(GANs),其中分布式训练报导称极具挑战性。在GANs分布式训练的实验中,我们证明了我们提出的方法的有效性。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月19日
VIP会员
相关VIP内容
专知会员服务
51+阅读 · 2020年12月14日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员