Subjective answer evaluation is a time-consuming and tedious task, and the quality of the evaluation is heavily influenced by a variety of subjective personal characteristics. Instead, machine evaluation can effectively assist educators in saving time while also ensuring that evaluations are fair and realistic. However, most existing methods using regular machine learning and natural language processing techniques are generally hampered by a lack of annotated answers and poor model interpretability, making them unsuitable for real-world use. To solve these challenges, we propose ProtSi Network, a unique semi-supervised architecture that for the first time uses few-shot learning to subjective answer evaluation. To evaluate students' answers by similarity prototypes, ProtSi Network simulates the natural process of evaluator scoring answers by combining Siamese Network which consists of BERT and encoder layers with Prototypical Network. We employed an unsupervised diverse paraphrasing model ProtAugment, in order to prevent overfitting for effective few-shot text classification. By integrating contrastive learning, the discriminative text issue can be mitigated. Experiments on the Kaggle Short Scoring Dataset demonstrate that the ProtSi Network outperforms the most recent baseline models in terms of accuracy and quadratic weighted kappa.


翻译:主观回答评估是一项耗时费时和繁琐的任务,评价的质量受到各种主观个人特征的严重影响。相反,机器评估可以有效地帮助教育者节省时间,同时确保评价是公平和现实的。然而,使用常规机器学习和自然语言处理技术的大多数现有方法通常由于缺乏附加说明的答案和模型解释能力差而受阻,使其不适于现实世界使用。为了应对这些挑战,我们提议了ProtSi网络,这是一个独特的半监督架构,首次对主观回答评估使用少发的学习。为了评估学生的答案,ProtSi网络通过将由BERT和编码器层组成的Simese网络与Protophical网络结合起来,模拟了评价员评分的自然过程。我们采用了一种未经监督的多种参数模型ProtAugment,以防止对短发文本进行有效的分类。通过结合对比性学习,可减少歧视性文本问题。在Kagglegle Shittle Scoration Dataset上实验了Krat-qraimational-si Net网络的最新基线术语。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
38+阅读 · 2020年12月2日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员