This paper presents the evaluation of effects of image size on deep learning performance via semantic segmentation of magnetic resonance heart images with U-net for fully automated quantification of myocardial infarction. Both non-extra pixel and extra pixel interpolation algorithms are used to change the size of images in datasets of interest. Extra class labels, in interpolated ground truth segmentation images, are removed using thresholding, median filtering, and subtraction strategies. Common class metrics are used to evaluate the quality of semantic segmentation with U-net against the ground truth segmentation while arbitrary threshold, comparison of the sums, and sums of differences between medical experts and fully automated results are options used to estimate the relationship between medical experts-based quantification and fully automated quantification results.
翻译:本文通过用U-net对磁共振心脏图像进行磁共振分解,以完全自动化地量化心肌梗塞,对图像大小对深层学习性能的影响进行评价。使用非异像素和额外像素内插算法来改变感兴趣的数据集中的图像大小。利用阈值、中位过滤和减法战略,删除了在跨集成的地面事实分解图中的额外类标签。使用普通类衡量标准来评价与U-net对地面事实分解的质量,而任意的临界值、数字的比较以及医疗专家与完全自动结果之间的差异总和,是用来估计基于医疗专家的定量和完全自动化的量化结果之间的关系的备选办法。