This study presents a Lagrange-Galerkin scheme of second order in time for the shallow water equations with a transmission boundary condition, which maintains the two advantages of the Lagrange-Galerkin methods, i.e., the CFL-free robustness for convection-dominated problems and the symmetry of the resulting coefficient matrices for the system of linear equations. The two material derivatives in non-conservative and conservative forms are discretized based on the ideas of the two-step backward difference formula of degree two along the trajectory of the fluid particle. Numerical results by the scheme are presented. Firstly, the experimental order of convergence of the scheme is shown to see the second-order accuracy in time. Secondly, the effect of the transmission boundary condition on a simple domain is discussed; the artificial reflections are kept from the Dirichlet boundaries and removed significantly from the transmission boundaries. Thirdly, the scheme is applied to a complex practical domain, i.e., the Bay of Bengal region, which is non-convex and includes islands. The effect of the transmission boundary condition is discussed again for the complex domain; the artificial reflections are removed significantly from transmission boundaries, which are set on open sea boundaries. Based on the numerical results, it is revealed that the scheme has the following properties; (i) the same advantages of Lagrange-Galerkin methods (the CFL-free robustness and the symmetry of the matrices); (ii) second-order accuracy in time; (iii) mass preservation of the function for the water level from the reference height (until the contact with the transmission boundaries of the wave); and (iv) no significant artificial reflection from the transmission boundaries.


翻译:此项研究为浅水方程式提供了一个第二顺序的Lagrange-Galerkin方案,该方案保持了Lagrange-Galerkin方法的两个优点,即对流主导问题的无CFL稳性以及由此产生的线性方程式系数矩阵的对称性。非保守和保守形式的两种物质衍生物根据流体粒子轨迹两步后向差公式的构想而分解。介绍了该办法的数值结果。首先,该办法的合并实验性边界顺序能够及时看到第二顺序的准确性。第二,讨论传输边界条件对简单域的影响;人为反射从Diricht 边界进行,并大大脱离传输边界。第三,该办法适用于一个复杂的实用域,即Bengal Bay区域,与非convex 区域,包括岛屿。传输边界条件的影响在复杂的域内再次讨论,传输边界线的实验性顺序的精确性顺序;传输边界对一个简单域域的影响; 人为反射法的底线图具有显著的底线; 向海面的反射法具有显著的底线(从C) 。

0
下载
关闭预览

相关内容

机器学习系统设计系统评估标准
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年8月25日
Arxiv
20+阅读 · 2021年2月28日
VIP会员
相关VIP内容
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员