In this work, we analyze the finite element method with arbitrary but fixed polynomial degree for the nonlinear Helmholtz equation with impedance boundary conditions. We show well-posedness and (pre-asymptotic) error estimates of the finite element solution under a resolution condition between the wave number $k$, the mesh size $h$ and the polynomial degree $p$ of the form ``$k(kh)^p$ sufficiently small'' and a so-called smallness of the data assumption. For the latter, we prove that the logarithmic dependence in $h$ from the case $p=1$ in [H. Wu, J. Zou, SIAM J. Numer. Anal. 56(3): 1338-1359, 2018] can be removed for $p\geq 2$. We show convergence of two different fixed-point iteration schemes. Numerical experiments illustrate our theoretical results and compare the robustness of the iteration schemes with respect to the size of the nonlinearity and the right-hand side data.
翻译:在这项工作中,我们分析了具有任意但固定的多元度的限定元素方法,用于具有阻碍性边界条件的非线性赫尔莫霍茨方程式。我们证明,在波数美元、网数美元和单位数美元之间的分辨率条件下,对有限元素溶液的精确性和(防患未然前)误差估计值为$k$、网数美元和多位数$p$ " $k(kh)p$足够小 " 和所谓的数据假设的微小。对于后者,我们证明,在非线性尺寸和右侧数据方面,可以去除以美元计算的对数依赖性。