Triple extraction is an essential task in information extraction for natural language processing and knowledge graph construction. In this paper, we revisit the end-to-end triple extraction task for sequence generation. Since generative triple extraction may struggle to capture long-term dependencies and generate unfaithful triples, we introduce a novel model, contrastive triple extraction with a generative transformer. Specifically, we introduce a single shared transformer module for encoder-decoder-based generation. To generate faithful results, we propose a novel triplet contrastive training object. Moreover, we introduce two mechanisms to further improve model performance (i.e., batch-wise dynamic attention-masking and triple-wise calibration). Experimental results on three datasets (i.e., NYT, WebNLG, and MIE) show that our approach achieves better performance than that of baselines.
翻译:三重提取是自然语言处理和知识图构建信息提取中的一项基本任务。 在本文中, 我们重新审视了序列生成的端到端三重提取任务。 由于基因三重提取可能难以捕捉长期依赖性和产生不忠的三重提取, 我们引入了一个新型模型, 对比式三重提取, 使用基因变压器。 具体地说, 我们为以编码器- 解码器为基础的一代引入了一个单一的共享变压器模块。 为了产生忠实的结果, 我们提出了一个新的三重对比培训对象 。 此外, 我们引入了两个机制来进一步改进模型性能( 即分批动态聚焦和三重校准 ) 。 三个数据集( 即NYT 、 WebNLG 和 MIE) 的实验结果显示, 我们的方法比基线效果更好 。