Spiking Neural Networks (SNNs) are brain-inspired, event-driven machine learning algorithms that have been widely recognized in producing ultra-high-energy-efficient hardware. Among existing SNNs, unsupervised SNNs based on synaptic plasticity, especially Spike-Timing-Dependent Plasticity (STDP), are considered to have great potential in imitating the learning process of the biological brain. Nevertheless, the existing STDP-based SNNs have limitations in constrained learning capability and/or slow learning speed. Most STDP-based SNNs adopted a slow-learning Fully-Connected (FC) architecture and used a sub-optimal vote-based scheme for spike decoding. In this paper, we overcome these limitations with: 1) a design of high-parallelism network architecture, inspired by the Inception module in Artificial Neural Networks (ANNs); 2) use of a Vote-for-All (VFA) decoding layer as a replacement to the standard vote-based spike decoding scheme, to reduce the information loss in spike decoding and, 3) a proposed adaptive repolarization (resetting) mechanism that accelerates SNNs' learning by enhancing spiking activities. Our experimental results on two established benchmark datasets (MNIST/EMNIST) show that our network architecture resulted in superior performance compared to the widely used FC architecture and a more advanced Locally-Connected (LC) architecture, and that our SNN achieved competitive results with state-of-the-art unsupervised SNNs (95.64%/80.11% accuracy on the MNIST/EMNISE dataset) while having superior learning efficiency and robustness against hardware damage. Our SNN achieved great classification accuracy with only hundreds of training iterations, and random destruction of large numbers of synapses or neurons only led to negligible performance degradation.


翻译:Spik Neural 网络(SNN)是大脑启发型的、由事件驱动的机能学习算法,在生产超高节能硬件的过程中,这种算法得到了广泛承认。在现有的SNNS中,基于超高节能节能硬件的无监督 SNNS, 特别是Spik-Timing-Dependent Syality(STDP)被认为具有模仿生物大脑学习过程的巨大潜力。然而,现有基于STDP的SNNS在学习能力和/或学习速度缓慢方面都存在局限性。大多数基于STDP的SNNNNNCSNNCS采用了一个学习速度缓慢的全节能(FC)结构,并使用一个基于亚优的基于投票的基于亚最佳选举的系统来加速解码工作。在本文中,我们克服了这些限制是:1)一个高频网络设计,在人工神经网络的感知模块(ANNSL)中, 仅使用“投票为全能(VFFA)解码(VFA)的解码层,以取代基于标准的快速解码的高级解码化(NC)系统)系统系统系统,以取代基于标准的解码的高级解码化的系统, 高级(SEM-cental-cental-cental-rolusal-dealdealde) 数据系统,在Snalde)运行中,在升级的系统运行中,在SNDRDRD)运行中,在加速了我们SNFNFSNDRDRDRDRDRDRD)运行的系统运行的系统运行的系统运行的系统运行中,在快速化的快速的系统运行中,在加速的快速的系统运行中,在快速的系统运行中,在快速的快速的快速两个级中,在提高中,在提高中,在提高中,在SNDSNDSNFSNDSNDSNBLDLDADDSDSDSDDDDADDA中,在加速中,在加速中,在SDADSDADADSDADADRDADADADADA中,在SND的

0
下载
关闭预览

相关内容

专知会员服务
45+阅读 · 2020年10月31日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
96+阅读 · 2020年5月31日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
95+阅读 · 2019年12月23日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
Recent advances in deep learning theory
Arxiv
50+阅读 · 2020年12月20日
Learning to Weight for Text Classification
Arxiv
8+阅读 · 2019年3月28日
Arxiv
7+阅读 · 2018年12月26日
Arxiv
11+阅读 · 2018年7月31日
Arxiv
7+阅读 · 2018年5月23日
VIP会员
相关VIP内容
专知会员服务
45+阅读 · 2020年10月31日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
96+阅读 · 2020年5月31日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
95+阅读 · 2019年12月23日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
相关论文
Top
微信扫码咨询专知VIP会员