Vehicular Metaverses represent emerging paradigms arising from the convergence of vehicle road cooperation, Metaverse, and augmented intelligence of things. Users engaging with Vehicular Metaverses (VMUs) gain entry by consistently updating their Vehicular Twins (VTs), which are deployed on RoadSide Units (RSUs) in proximity. The constrained RSU coverage and the consistently moving vehicles necessitate the continuous migration of VTs between RSUs through vehicle road cooperation, ensuring uninterrupted immersion services for VMUs. Nevertheless, the VT migration process faces challenges in obtaining adequate bandwidth resources from RSUs for timely migration, posing a resource trading problem among RSUs. In this paper, we tackle this challenge by formulating a game-theoretic incentive mechanism with multi-leader multi-follower, incorporating insights from social-awareness and queueing theory to optimize VT migration. To validate the existence and uniqueness of the Stackelberg Equilibrium, we apply the backward induction method. Theoretical solutions for this equilibrium are then obtained through the Alternating Direction Method of Multipliers (ADMM) algorithm. Moreover, owing to incomplete information caused by the requirements for privacy protection, we proposed a multi-agent deep reinforcement learning algorithm named MALPPO. MALPPO facilitates learning the Stackelberg Equilibrium without requiring private information from others, relying solely on past experiences. Comprehensive experimental results demonstrate that our MALPPO-based incentive mechanism outperforms baseline approaches significantly, showcasing rapid convergence and achieving the highest reward.
翻译:暂无翻译