We propose a theoretical framework for non redundant reconstruction of a global loss from a collection of local ones under constraints given by a functor; we call this loss the regionalized loss in honor to Yedidia, Freeman, Weiss' celebrated article `Constructing free-energy approximations and generalized belief propagation algorithms' where a first example of regionalized loss, for entropy and the marginal functor, is built. We show how one can associate to these regionalized losses message passing algorithms for finding their critical points. It is a natural mathematical framework for optimization problems where there are multiple points of views on a dataset and replaces message passing algorithms as canonical ways of finding the optima of these problems. We explain how Generalized Belief propagation algorithms fall into the framework we propose and propose novel message passing algorithms for noisy channel networks.
翻译:我们提出了一个理论框架,用于在真菌的制约下,从一批当地人手中重建全球损失的不冗余;我们称这一损失为区域化损失,以纪念Yedidia、Freeman、Weiss的庆祝文章“构建自由能源近似值和普遍信仰传播算法”,在文章“构建一个区域化损失的第一个实例,即对英特罗比和边际真菌”中,构建了一个区域化损失的第一个实例。我们展示了人们如何将这些区域化损失信息传递算法联系起来,以找到其关键点。这是一个自然数学框架,用于优化问题,在数据集上存在多种观点,并取代信息传递算法,作为找到这些问题的选取方式。我们解释了普遍信仰传播算法如何被纳入我们提出的框架,并为噪音频道网络提出新的信息传递算法。