Remote sensing semantic segmentation aims to assign automatically each pixel on aerial images with specific label. In this letter, we proposed a new module, called improved-flow warp module (IFWM), to adjust semantic feature maps across different scales for remote sensing semantic segmentation. The improved-flow warp module is applied along with the feature extraction process in the convolutional neural network. First, IFWM computes the offsets of pixels by a learnable way, which can alleviate the misalignment of the multi-scale features. Second, the offsets help with the low-resolution deep feature up-sampling process to improve the feature accordance, which boosts the accuracy of semantic segmentation. We validate our method on several remote sensing datasets, and the results prove the effectiveness of our method..
翻译:在这封信中,我们提议了一个新的模块,称为改进流曲模件(IFWM),以调整不同尺度的语义特征图,用于遥感语义分离。改进流曲解模块与进化神经网络的特征提取过程一起应用。首先,IFWM通过一种可学习的方法计算了像素的抵消量,这可以减轻多尺度特征的不匹配性。第二,这种抵消有助于低分辨率深度特征采集过程改进特征,从而提高语义分离的准确性。我们验证了我们关于若干遥感数据集的方法,结果证明了我们的方法的有效性。