Inverse kinematics - finding joint poses that reach a given Cartesian-space end-effector pose - is a common operation in robotics, since goals and waypoints are typically defined in Cartesian space, but robots must be controlled in joint space. However, existing inverse kinematics solvers return a single solution pose, where systems with more than 6 degrees of freedom support infinitely many such solutions, which can be useful in the presence of constraints, pose preferences, or obstacles. We introduce a method that uses a deep neural network to learn to generate a diverse set of samples from the solution space of such kinematic chains. The resulting samples can be generated quickly (2000 solutions in under 10ms) and accurately (to within 10 millimeters and 2 degrees of an exact solution) and can be rapidly refined by classical methods if necessary.
翻译:反动动力学 -- -- 找到达到特定笛卡尔-空间最终效应的组合构成 -- -- 是机器人的一种常见操作,因为目标和路径点通常是在笛卡尔空间中定义的,但机器人必须在共同空间中加以控制。然而,现有的反动动能解答器返回一个单一的解决方案,即拥有超过6度自由支持的系统可以无穷无穷的这些解决方案,这些解决方案在遇到制约、偏好或障碍的情况下是有用的。我们引入了一种方法,利用深神经网络学习从这种动能链的溶解空间中产生各种各样的样本。产生的样本可以快速生成(在10米以下的2000个解决方案),并准确(在10毫米以内和2度的精确解决方案),必要时可以通过传统方法快速改进。