Physics-based inverse modeling techniques are typically restricted to particular research fields, whereas popular machine-learning-based ones are too data-dependent to guarantee the physical compatibility of the solution. In this paper, Self-Validated Physics-Embedding Network (SVPEN), a general neural network framework for inverse modeling is proposed. As its name suggests, the embedded physical forward model ensures that any solution that successfully passes its validation is physically reasonable. SVPEN operates in two modes: (a) the inverse function mode offers rapid state estimation as conventional supervised learning, and (b) the optimization mode offers a way to iteratively correct estimations that fail the validation process. Furthermore, the optimization mode provides SVPEN with reconfigurability i.e., replacing components like neural networks, physical models, and error calculations at will to solve a series of distinct inverse problems without pretraining. More than ten case studies in two highly nonlinear and entirely distinct applications: molecular absorption spectroscopy and Turbofan cycle analysis, demonstrate the generality, physical reliability, and reconfigurability of SVPEN. More importantly, SVPEN offers a solid foundation to use existing physical models within the context of AI, so as to striking a balance between data-driven and physics-driven models.
翻译:以物理为基础的反建模技术通常局限于特定的研究领域,而以机器学习为基础的流行型模型则过于依赖数据,无法保证解决办法的物理兼容性。在本文件中,提出了反建模的一般神经网络框架,如其名称所示,嵌入物理前方模型确保成功通过验证的任何解决办法在物理上是合理的。SVPEN以两种方式运作:(a)反函数模式作为常规监督学习提供快速的国家估计,和(b)优化模式为迭代纠正无法验证过程的估算提供了一种途径。此外,优化模式为SVPEN提供了可重新配置性(即)即替换神经网络、物理模型和误差计算等部件,从而在不预先训练的情况下解决一系列截然不同的反向问题。在两种高度非线性且完全不同的应用中,有十多项案例研究:分子吸收光谱和Turbofan循环分析,展示SVPEN的一般性、物理可靠性和可重新配置性分析。更重要的是,优化模式为SVPEN提供重新配置性估算能力,例如,取代神经网络、物理模型和以稳定为基础,SVPEN在现有的物理模型中使用一个坚固基。