Diverse and realistic traffic scenarios are crucial for evaluating the AI safety of autonomous driving systems in simulation. This work introduces a data-driven method called TrafficGen for traffic scenario generation. It learns from the fragmented human driving data collected in the real world and then can generate realistic traffic scenarios. TrafficGen is an autoregressive generative model with an encoder-decoder architecture. In each autoregressive iteration, it first encodes the current traffic context with the attention mechanism and then decodes a vehicle's initial state followed by generating its long trajectory. We evaluate the trained model in terms of vehicle placement and trajectories and show substantial improvements over baselines. TrafficGen can be also used to augment existing traffic scenarios, by adding new vehicles and extending the fragmented trajectories. We further demonstrate that importing the generated scenarios into a simulator as interactive training environments improves the performance and the safety of driving policy learned from reinforcement learning. More project resource is available at https://metadriverse.github.io/trafficgen
翻译:在模拟中,多元和现实的交通情况对于评价自动驾驶系统安全性能至关重要。这项工作采用了一种数据驱动方法,称为“交通Gen”,用于生成交通情况。它从在现实世界中收集的零散载人驾驶数据中学习,然后可以产生现实的交通情况。交通Gen是一个自动递增的基因模型,带有编码器脱coder-decoder结构。在每次自动递增的循环中,它首先将目前的交通情况与关注机制编码,然后解码车辆的初始状态,然后生成长轨轨迹。我们从车辆放置和轨迹的角度评价经过训练的车辆定位和轨迹模型,并显示在基线上的重大改进。交通Gen也可以通过增加新车辆和扩大支离破碎的轨迹来扩大现有的交通情况。我们进一步证明,将产生的假景纳入模拟器,因为交互式培训环境可以提高从强化学习中学习的驾驶政策性能和安全性能。更多的项目资源见https://metadrivor.github.io/trafficgen。