Existing methods proposed for hand reconstruction tasks usually parameterize a generic 3D hand model or predict hand mesh positions directly. The parametric representations consisting of hand shapes and rotational poses are more stable, while the non-parametric methods can predict more accurate mesh positions. In this paper, we propose to reconstruct meshes and estimate MANO parameters of two hands from a single RGB image simultaneously to utilize the merits of two kinds of hand representations. To fulfill this target, we propose novel Mesh-Mano interaction blocks (MMIBs), which take mesh vertices positions and MANO parameters as two kinds of query tokens. MMIB consists of one graph residual block to aggregate local information and two transformer encoders to model long-range dependencies. The transformer encoders are equipped with different asymmetric attention masks to model the intra-hand and inter-hand attention, respectively. Moreover, we introduce the mesh alignment refinement module to further enhance the mesh-image alignment. Extensive experiments on the InterHand2.6M benchmark demonstrate promising results over the state-of-the-art hand reconstruction methods.
翻译:现有的手部重建方法通常对通用的3D手部模型进行参数化或直接预测手部网格位置。由手部形状和旋转姿态组成的参数表示更加稳定,而非参数化方法可以预测更准确的网格位置。本文提出从单幅RGB图像同时重建两只手的网格并估计MANO参数,以利用两种手部表示的优点。为实现这一目标,我们提出了新颖的Mesh-Mano交互块(MMIB),它将网格顶点位置和MANO参数作为两种查询令牌。MMIB由一个图形残差块组成,用于聚合局部信息,并由两个Transformer编码器组成,用于模拟长程依赖关系。Transformer编码器配备不同的不对称注意掩码,以分别模拟手内和手间的关注。此外,我们引入了网格对齐细化模块,以进一步增强网格-图像对齐。在InterHand2.6M基准测试上进行了广泛的实验,证明了本文方法优于现有的手部重建方法的良好效果。