基于激光雷达的传感技术驱动着目前的自动驾驶汽车。尽管进展迅速,但目前的激光雷达传感器在分辨率和成本方面仍落后于传统彩色相机20年。对于自动驾驶来说,这意味着靠近传感器的大物体很容易被看到,但远处或小物体只包含一两个测量。这是一个问题,尤其是当这些物体被证明是驾驶危险的时候。另一方面,这些相同的物体在机载RGB传感器中清晰可见。在这项工作中,我们提出了无缝融合RGB传感器到基于激光雷达的3D识别的方法。我们的方法采用一组二维检测来生成密集的三维虚拟点,以增强稀疏的三维点云。这些虚拟点自然地集成到任何标准的基于激光雷达的3D探测器以及常规激光雷达测量。由此产生的多模态检测器简单而有效。在大规模nuScenes数据集上的实验结果表明,我们的框架通过显著的6.6 mAP改善了一个强大的中心点基线,并优于其他融合方法。代码和更多可视化信息可以在https://tianweiy.github.io/mvp/上找到
https://www.zhuanzhi.ai/paper/9afd31658f8e7d07ca036dcf0cfdb8b3