Selecting appropriate visual encodings is critical to designing effective visualization recommendation systems, yet few findings from graphical perception are typically applied within these systems. We observe two significant limitations in translating graphical perception knowledge into actionable visualization recommendation rules/constraints: inconsistent reporting of findings and a lack of shared data across studies. How can we translate the graphical perception literature into a knowledge base for visualization recommendation? We present a review of 59 papers that study user perception and performance across ten visual analysis tasks. Through this study, we contribute a JSON dataset that collates existing theoretical and experimental knowledge and summarizes key study outcomes in graphical perception. We illustrate how this dataset can inform automated encoding decisions with three representative visualization recommendation systems. Based on our findings, we highlight open challenges and opportunities for the community in collating graphical perception knowledge for a range of visualization recommendation scenarios.
翻译:选择适当的视觉编码对于设计有效的可视化建议系统至关重要,然而,在这些系统中通常很少应用图形认知的研究结果。我们观察到在将图形认知知识转化为可操作可视化建议规则/约束方面有两个重大局限性:对研究结果的报告不一致,而且各研究之间缺乏共享的数据。我们如何将图形认知文献转化为可视化建议的知识库?我们提出对59份文件的审查,研究用户对10项视觉分析任务的认识和业绩。我们通过这项研究,提供了一套JSON数据集,该数据集收集了现有的理论和实验知识,并汇总了图形认知中的关键研究成果。我们用三个具有代表性的可视化建议系统来说明该数据集如何为自动编码决定提供信息。我们根据我们的调查结果,突出强调了社区在为一系列可视化建议情景整理图形认知知识方面的公开挑战和机遇。