We present a novel quantum algorithm for estimating Gibbs partition functions in sublinear time with respect to the logarithm of the size of the state space. This is the first speed-up of this type to be obtained over the seminal nearly-linear time algorithm of \v{S}tefankovi\v{c}, Vempala and Vigoda [JACM, 2009]. Our result also preserves the quadratic speed-up in precision and spectral gap achieved in previous work by exploiting the properties of quantum Markov chains. As an application, we obtain new polynomial improvements over the best-known algorithms for computing the partition function of the Ising model, counting the number of $k$-colorings, matchings or independent sets of a graph, and estimating the volume of a convex body. Our approach relies on developing new variants of the quantum phase and amplitude estimation algorithms that return nearly unbiased estimates with low variance and without destroying their initial quantum state. We extend these subroutines into a nearly unbiased quantum mean estimator that reduces the variance quadratically faster than the classical empirical mean. No such estimator was known to exist prior to our work. These properties, which are of general interest, lead to better convergence guarantees within the paradigm of simulated annealing for computing partition functions.
翻译:我们提出一个新的量子算法, 用于在次线性时间估计 Gibbs 分区函数, 相对于国家空间大小的对数。 这是首次在以下基质近线时间算法\ v{S}S}tefankovi\ v{c}, Vempala 和 Vigoda [JACM, 2009] 中获取的这种类型的加速算法。 我们的结果还保留了在先前工作中通过利用量子 Markov 链的特性而实现的精确度和光谱差距的二次加速率。 作为应用程序, 我们获得了新的多线性算法改进, 以计算Ising 模型的分区函数, 计算美元- 彩色数, 匹配或独立的图表数组, 并估计一个锥体体体体体体体体的体积。 我们的方法是开发量级阶段和振度估计算法的新变量, 以低差异返回近乎公正的估计值, 且不破坏最初的量值状态。 我们将这些子路由近乎公正的量值平均估测算法, 将降低差异度的量值平均度平均度计算法值, 。 这些模型的模型在模型中, 的模型中, 的模型中, 的数值的数值比典型级定值的特性的特性的特性的特性更接近于我们所知道的模型, 。