We show that in the context of classification the property of source and target distributions to be related by covariate shift may be lost if the information content captured in the covariates is reduced, for instance by dropping components or mapping into a lower-dimensional or finite space. As a consequence, under covariate shift simple approaches to class prior estimation in the style of classify and count with or without adjustment are infeasible. We prove that transformations of the covariates that preserve the covariate shift property are necessarily sufficient in the statistical sense for the full set of covariates. A probing algorithm as alternative approach to class prior estimation under covariate shift is proposed.
翻译:我们表明,在分类方面,如果通过投放部件或向低维或有限空间绘图等方法减少共变式中收集的信息内容,则因共变式转移而关联的来源和目标分布属性可能丢失。因此,在以分类和计数方式对先前的分类进行简单分类估算的共变式转换,无论是否调整,都是不可行的。我们证明,从统计意义上看,保留共变式转移属性的共变式转换对于全套共变式来说,必然足以满足全部共变式的统计意义。在共变式变化下,提出了一种验证算法,作为先前对先前的分类估算的替代方法。