Federated learning (FL) hyper-parameters significantly affect the training overheads in terms of computation time, transmission time, computation load, and transmission load. However, the current practice of manually selecting FL hyper-parameters puts a high burden on FL practitioners since various applications prefer different training preferences. In this paper, we propose FedTune, an automatic FL hyper-parameter tuning algorithm tailored to applications' diverse system requirements of FL training. FedTune is lightweight and flexible, achieving 4.18%-22.48% improvement for different datasets compared to fixed FL hyper-parameters. FedTune is available at \url{https://github.com/dtczhl/FedTuning}.


翻译:联邦学习(FL)超参数在计算时间、传输时间、计算负荷和传输负荷方面对培训间接费用产生重大影响,然而,目前人工选择FL超参数的做法给FL实践者带来沉重负担,因为各种应用偏好不同的培训偏好。我们在此文件中提议FedTune, 一种自动FL超参数调算法,适合应用FL培训的各种系统要求。 FedTune是轻便和灵活的,与固定的FL超参数相比,不同数据集的改进率为4.18%-22.48%。 FedTune可在\url{https://github.com/dtczl/FedTurning}查阅。

0
下载
关闭预览

相关内容

专知会员服务
32+阅读 · 2021年7月15日
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
92+阅读 · 2020年12月2日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
167+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
6+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月17日
VIP会员
相关VIP内容
专知会员服务
32+阅读 · 2021年7月15日
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
92+阅读 · 2020年12月2日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
167+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
6+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员