A class of network codes have been proposed in the literature where the symbols transmitted on each edge are binary vectors and the coding operation performed in network nodes consists of the application of (possibly several) permutations on each incoming vector and XOR-ing the results to obtain the outgoing vector. These network codes, which we will refer to as permute-and-add network codes, involve simple operations and are known to provide lower complexity solutions than scalar linear codes. The complexity of these codes are determined by their degree which is the number of permutations applied on each incoming vector to compute an outgoing vector. Constructions of permute-and-add network codes of small degree for multicast networks are known. In this paper, we provide a new framework based on group algebras to design permute-and-add network codes for arbitrary (not necessarily multicast) networks. Our framework allows the use of arbitrary group of permutations (including circular shifts, proposed in prior work) and admits a trade-off between coding rate and the degree of the code. Our technique permits elegant recovery and generalizations of the key known results on permute-and-add network codes. The proposed network codes employ low degree permute-and-add operation for encoding as well as decoding.
翻译:文献中建议了网络代码的类别, 在每个边缘上传送的符号是二进矢量, 在网络节点中进行的编码操作包括在每个进端矢量和XOR结果上应用( 可能数个) 排列( 可能数) 和 XOR 的结果来获取导出矢量。 这些网络代码, 我们将称之为 permute- 和 add 网络代码, 涉及简单操作, 并已知提供比标度线性代码更低的复杂解决方案。 这些代码的复杂性取决于它们的程度, 即每个进口矢量对计算输出矢量应用的偏移次数。 我们的技巧允许多播送网络使用精准恢复和添加的小度网络代码。 在本文中, 我们提供了一个基于群代数的新框架, 用于任意( 不一定是多播式) 网络设计 permute- 和 添加的网络代码。 我们的框架允许使用任意的组合( 包括循环转换, 先前工作中提议), 并承认编码的交换率与代码的程度。 我们的技巧允许在多播种网络中进行精度的精度回收和一般化, 网络操作。