Let $\{G_i :i\in\N\}$ be a family of finite Abelian groups. We say that a subgroup $G\leq \prod\limits_{i\in \N}G_i$ is \emph{order controllable} if for every $i\in \mathbb{N}$ there is $n_i\in \mathbb{N}$ such that for each $c\in G$, there exists $c_1\in G$ satisfying that $c_{1|[1,i]}=c_{|[1,i]}$, $supp (c_1)\subseteq [1,n_i]$, and order$(c_1)$ divides order$(c_{|[1,n_i]})$. In this paper we investigate the structure of order controllable subgroups. It is known that each order controllable profinite abelian group is topologically isomorphic to a direct product of cyclic groups (see \cite{FHS:2017,kiehlmann}). Here we improve this result and prove that under mild conditions an order controllable group $G$ contains a {set} $\{g_n : n\in\N\}$ that topologically generates $G$, and whose elements $g_n$ have all finite support. As a consequence, we obtain that if $G$ is an order controllable, shift invariant, group code over an abelian group $H$, then $G$ possesses a canonical generator set. Furthermore, our construction also yields that $G$ is algebraically conjugate to a full group shift. Some connections to coding theory are also highlighted.
翻译:$G_ i: i\ i\ in\ n $ 是一个固定的 Abel 组的家族。 我们说, 一个分组 $G\ leq\ prod\ limits\ i\ in\ N} G_ $ 是 emph{ 命令控制 $, 如果对于每个$\ mathbb{ N} $是 $n_ i_ i: i\ in g$, 那么每个 $c\ g$, 就有 $c_ 1 g$, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元。 在本文件中, 我们调查一个可调的子组的结构结构。 已知, 每一个可控的组合都是 向一个直接的 。