Compositional disorder induces myriad captivating phenomena in perovskites. Target-driven discovery of perovskite solid solutions has been a great challenge due to the analytical complexity introduced by disorder. Here, we demonstrate that an unsupervised deep learning strategy can find fingerprints of disordered materials that embed perovskite formability and underlying crystal structure information by learning only from the chemical composition, manifested in (A1-xA'x)BO3 and A(B1-xB'x)O3 formulae. This phenomenon can be capitalized to predict the crystal symmetry of experimental compositions, outperforming several supervised machine learning (ML) algorithms. The educated nature of material fingerprints has led to the conception of analogical materials discovery that facilitates inverse exploration of promising perovskites based on similarity investigation with known materials. The search space of unstudied perovskites is screened from ~600,000 feasible compounds using experimental data powered ML models and automated web mining tools at a 94% success rate. This concept further provides insights on possible phase transitions and computational modelling of complex compositions. The proposed quantitative analysis of materials analogies is expected to bridge the gap between the existing materials literature and the undiscovered terrain.
翻译:以目标驱动的发现百草枯固态的计算方法是一个巨大的挑战,因为混乱带来的分析复杂性。在这里,我们证明一个未经监督的深层次学习战略能够找到含有百草枯成形性和底晶结构信息的无序材料的指纹,这种材料通过(A1-xA'x)BO3 和 A(B1-xB'x)O3 公式从化学成分中学习,表现在(A1-xA'x)BO3 和 A(B1-xB'x)O3 公式中。这个现象可以资本化,以预测实验成分的晶体对称,优于若干受监督的机器学习算法。材料指纹受过教育的性质导致了模拟材料发现的概念,这种发现有助于在对已知材料进行类似性调查的基础上对有希望的百草枯燥物进行反向探索。未研究的百草枯叶的搜索空间将利用实验数据驱动的ML模型和94%的成功率的自动网络采矿工具从大约600,000种可行的化合物进行筛选。这个概念还有助于了解可能的阶段过渡以及复杂成分的计算模型。拟议的材料模拟分析,以便缩小现有文献和地形之间的距离。