Mitotic counting is a vital prognostic marker of tumor proliferation in breast cancer. Deep learning-based mitotic detection is on par with pathologists, but it requires large labeled data for training. We propose a deep classification framework for enhancing mitosis detection by leveraging class label information, via softmax loss, and spatial distribution information among samples, via distance metric learning. We also investigate strategies towards steadily providing informative samples to boost the learning. The efficacy of the proposed framework is established through evaluation on ICPR 2012 and AMIDA 2013 mitotic data. Our framework significantly improves the detection with small training data and achieves on par or superior performance compared to state-of-the-art methods for using the entire training data.
翻译:光学计数是乳腺癌肿瘤扩散的重要预测标志。 深入的基于学习的线性检测与病理学家相同,但需要大量有标签的培训数据。 我们提出一个深入的分类框架,通过利用课堂标签信息、软轴损失和通过远程计量学习在样本中空间分布信息,加强对肾上腺素的检测。 我们还调查稳步提供信息样本以促进学习的战略。通过对2012年综合预防调查的评价和2013年非洲开发署的在线数据评估,确定了拟议框架的有效性。我们的框架大大改进了利用小型培训数据的检测,并实现了与使用整个培训数据的最新方法相比的同等或优异性。