Hypergraph neural networks (HNNs) using neural networks to encode hypergraphs provide a promising way to model higher-order relations in data and further solve relevant prediction tasks built upon such higher-order relations. However, higher-order relations in practice contain complex patterns and are often highly irregular. So, it is often challenging to design an HNN that suffices to express those relations while keeping computational efficiency. Inspired by hypergraph diffusion algorithms, this work proposes a new HNN architecture named ED-HNN, which provably represents any continuous equivariant hypergraph diffusion operators that can model a wide range of higher-order relations. ED-HNN can be implemented efficiently by combining star expansions of hypergraphs with standard message passing neural networks. ED-HNN further shows great superiority in processing heterophilic hypergraphs and constructing deep models. We evaluate ED-HNN for node classification on nine real-world hypergraph datasets. ED-HNN uniformly outperforms the best baselines over these nine datasets and achieves more than 2\%$\uparrow$ in prediction accuracy over four datasets therein.
翻译:超音速神经网络(HNNS)使用神经网络编码超高光谱,为模拟数据中较高顺序关系并进一步解决基于此类较高顺序关系的相关预测任务提供了一个很有希望的方法。然而,较高顺序关系实际上包含复杂的模式,而且往往极不规则。因此,设计一个足以表达这些关系同时又保持计算效率的超音速神经网络(HNN)往往具有挑战性。在高光谱扩散算法的启发下,这项工作提出了一个新的HNNN结构,名为ED-HNNN, 它可以代表任何连续的等同性高射线扩散操作器,可以建模一系列广泛的较高顺序关系。ED-HNNN可以有效地实施,将超光谱星扩展与标准电传电神经网络结合起来。ED-HNNN在处理高光学超光谱和构建深度模型方面表现出极大的优势。我们评价ED-HNNN, 用于九个真实世界高光谱数据集的节定分类。ED-HNNNU一致地代表了这九个数据集的最佳基线,并在其中的预测中实现超过2 $\\ arrorlorows。