Many of the classic graph problems cannot be solved in the Massively Parallel Computation setting (MPC) with strongly sublinear space per machine and $o(\log n)$ rounds, unless the 1-vs-2 cycles conjecture is false. This is true even on planar graphs. Such problems include, for example, counting connected components, bipartition, minimum spanning tree problem, (approximate) shortest paths, and (approximate) diameter/radius. In this paper, we show a way to get around this limitation. Specifically, we show that if we have a ``nice'' (for example, straight-line) embedding of the input graph, all the mentioned problems can be solved with $O(n^{2/3+\epsilon})$ space per machine in $O(1)$ rounds. In conjunction with existing algorithms for computing the Delaunay triangulation, our results imply an MPC algorithm for exact Euclidean minimum spanning thee (EMST) that uses $O(n^{2/3 + \epsilon})$ space per machine and finishes in $O(1)$ rounds. This is the first improvement over a straightforward use of the standard Bor\r{u}vka's algorithm with the Dauleanay triangulation algorithm of Goodrich [SODA 1997] which results in $\Theta(\log n)$ rounds. This also partially negatively answers a question of Andoni, Nikolov, Onak, and Yaroslavtsev [STOC 2014], asking for lower bounds for exact EMST. We extend our algorithms to work with embeddings consisting of curves that are not ``too squiggly" (as formalized by the total absolute curvature). We do this via a new lemma which we believe is of independent interest and could be used to parameterize other geometric problems by the total absolute curvature. We also state several open problems regarding massively parallel computation on planar graphs.


翻译:许多经典图表问题无法在Massolious 平行计算设置(MPC) 中解决, 以强烈的亚线间间距每个机器和美元( log n) 圆形( 直线) 。 除非 1- vs-2 周期的推测是假的。 即使在平面图中也是如此。 这些问题包括, 例如, 计数连接部件、 双向、 最小覆盖树状问题、 (近似) 最短路径和( 近似) 直径/ 弧。 在本文中, 我们展示了接近于此限制的答案。 具体地说, 我们显示, 如果我们有一个“ 线性” (例如, 直线) 嵌入输入图, 那么所有提到的问题都可以用$ (n) 2/3 ⁇ / eepc) 周期的假设解决。 这些问题包括, 计算Delaunay 三角曲线的现有算法, 我们的结果意味着 MPC 算出精确的nclational- more mille (EMST) 使用 $( nal deal) ral deal) (national ral ral) ral-ral- oral oral ral_al_ oral_ oral____ oral___) orma_ 工作, 。

0
下载
关闭预览

相关内容

PARCO:Parallel Computing。 Explanation:并行计算。 Publisher:Elsevier。 SIT:http://dblp.uni-trier.de/db/conf/parco/
专知会员服务
50+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年1月19日
Arxiv
19+阅读 · 2020年7月13日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员