Maximal Independent Set (MIS) is one of the fundamental and most well-studied problems in distributed graph algorithms. Even after four decades of intensive research, the best-known (randomized) MIS algorithms have $O(\log{n})$ round complexity on general graphs [Luby, STOC 1986] (where $n$ is the number of nodes), while the best-known lower bound is $\Omega(\sqrt{\log{n}/\log\log{n}})$ [Kuhn, Moscibroda, Wattenhofer, JACM 2016]. Breaking past the $O(\log{n})$ round complexity upper bound or showing stronger lower bounds have been longstanding open problems. Our main contribution is to show that MIS can be computed in awake complexity that is \emph{exponentially} better compared to the best known round complexity of $O(\log n)$ and also bypassing its fundamental $\Omega(\sqrt{\log{n}/\log\log{n}})$ round complexity lower bound exponentially. Specifically, we show that MIS can be computed by a randomized distributed (Monte Carlo) algorithm in $O(\log\log{n} )$ awake complexity with high probability. However, this algorithm has a round complexity that is $O(poly(n))$. We then show how to drastically improve the round complexity at the cost of a slight increase in awake complexity by presenting a randomized distributed (Monte Carlo) algorithm for MIS that, with high probability computes an MIS in $O((\log\log{n})\log^*n)$ awake complexity and $O((\log^3 n) (\log \log n) \log^*n)$ round complexity. Our algorithms work in the CONGEST model where messages of size $O(\log n)$ bits can be sent per edge per round.


翻译:最大独立 Set (MIS) 是分布式图表算法中最基本和最深入的问题之一。 即使经过40年的密集研究, 最著名的 MIS 算法在一般图形[Luby, STOC 1986] (美元是节点数量) 中具有$( O) 圆复杂度, 而最著名的下限是 $( sqrt\log{n}/\log\log{n ⁇ ) $ (Kuhn, Moscibroda, Wattenhofer, JACM 2016) 。 打破 $( log{n} ) 圆复杂度或显示更低界限的 。 我们的主要贡献是显示 MIS 可以在清醒的复杂度中进行计算, 这比已知的 $( log n) 最低复杂度( more) 和 基本复杂度( morega) (Oralgreal_rlog_ 美元) 。

0
下载
关闭预览

相关内容

专知会员服务
39+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年3月14日
Arxiv
0+阅读 · 2023年3月13日
Arxiv
0+阅读 · 2023年3月10日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员