Maximal Independent Set (MIS) is one of the fundamental and most well-studied problems in distributed graph algorithms. Even after four decades of intensive research, the best-known (randomized) MIS algorithms have $O(\log{n})$ round complexity on general graphs [Luby, STOC 1986] (where $n$ is the number of nodes), while the best-known lower bound is $\Omega(\sqrt{\log{n}/\log\log{n}})$ [Kuhn, Moscibroda, Wattenhofer, JACM 2016]. Breaking past the $O(\log{n})$ round complexity upper bound or showing stronger lower bounds have been longstanding open problems. Our main contribution is to show that MIS can be computed in awake complexity that is \emph{exponentially} better compared to the best known round complexity of $O(\log n)$ and also bypassing its fundamental $\Omega(\sqrt{\log{n}/\log\log{n}})$ round complexity lower bound exponentially. Specifically, we show that MIS can be computed by a randomized distributed (Monte Carlo) algorithm in $O(\log\log{n} )$ awake complexity with high probability. However, this algorithm has a round complexity that is $O(poly(n))$. We then show how to drastically improve the round complexity at the cost of a slight increase in awake complexity by presenting a randomized distributed (Monte Carlo) algorithm for MIS that, with high probability computes an MIS in $O((\log\log{n})\log^*n)$ awake complexity and $O((\log^3 n) (\log \log n) \log^*n)$ round complexity. Our algorithms work in the CONGEST model where messages of size $O(\log n)$ bits can be sent per edge per round.
翻译:最大独立 Set (MIS) 是分布式图表算法中最基本和最深入的问题之一。 即使经过40年的密集研究, 最著名的 MIS 算法在一般图形[Luby, STOC 1986] (美元是节点数量) 中具有$( O) 圆复杂度, 而最著名的下限是 $( sqrt\log{n}/\log\log{n ⁇ ) $ (Kuhn, Moscibroda, Wattenhofer, JACM 2016) 。 打破 $( log{n} ) 圆复杂度或显示更低界限的 。 我们的主要贡献是显示 MIS 可以在清醒的复杂度中进行计算, 这比已知的 $( log n) 最低复杂度( more) 和 基本复杂度( morega) (Oralgreal_rlog_ 美元) 。