The fusion models, which effectively combine information from different sources, are widely used in solving multimodal tasks. However, they have significant limitations related to aligning data distributions across different modalities. This challenge can lead to inconsistencies and difficulties in learning robust representations. Alignment models, while specifically addressing this issue, often require training "from scratch" with large datasets to achieve optimal results, which can be costly in terms of resources and time. To overcome these limitations, we propose an innovative model called Context-Based Multimodal Fusion (CBMF), which combines both modality fusion and data distribution alignment. In CBMF, each modality is represented by a specific context vector, fused with the embedding of each modality. This enables the use of large pre-trained models that can be frozen, reducing the computational and training data requirements. Additionally, the network learns to differentiate embeddings of different modalities through fusion with context and aligns data distributions using a contrastive approach for self-supervised learning. Thus, CBMF offers an effective and economical solution for solving complex multimodal tasks.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
10+阅读 · 2021年3月30日
Arxiv
15+阅读 · 2019年11月26日
Self-Attention Graph Pooling
Arxiv
13+阅读 · 2019年6月13日
Deep Face Recognition: A Survey
Arxiv
18+阅读 · 2019年2月12日
Arxiv
11+阅读 · 2018年4月25日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
10+阅读 · 2021年3月30日
Arxiv
15+阅读 · 2019年11月26日
Self-Attention Graph Pooling
Arxiv
13+阅读 · 2019年6月13日
Deep Face Recognition: A Survey
Arxiv
18+阅读 · 2019年2月12日
Arxiv
11+阅读 · 2018年4月25日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员