We present a novel differentiable weighted generalized iterative closest point (WGICP) method applicable to general 3D point cloud data, including that from Lidar. Our method builds on differentiable generalized ICP (GICP), and we propose using the differentiable K-Nearest Neighbor (KNN) algorithm to enhance differentiability. The differentiable GICP algorithm provides the gradient of output pose estimation with respect to each input point, which allows us to train a neural network to predict its importance, or weight, in estimating the correct pose. In contrast to the other ICP-based methods that use voxel-based downsampling or matching methods to reduce the computational cost, our method directly reduces the number of points used for GICP by only selecting those with the highest weights and ignoring redundant ones with lower weights. We show that our method improves both accuracy and speed of the GICP algorithm for the KITTI dataset and can be used to develop a more robust and efficient SLAM system.
翻译:我们提出了一个适用于通用 3D 点云数据( 包括利达尔 ) 的新颖的加权通用迭代点最接近点( WGICP ) 方法。 我们的方法基于不同的通用比较方案( GICP ), 我们建议使用不同的 K- Nearest 邻里伯尔( KNN) 算法来提高差异性。 不同的 GICP 算法为每个输入点提供了输出梯度的估算值, 使我们能够训练一个神经网络来预测其重要性或重量, 来估计正确的方位。 与以 voxel 为基础的其他方法相比, 我们的方法直接减少了用于GICP 的点数, 方法是只选择重量最高者, 忽略重量较低的冗余者。 我们表明,我们的方法提高了KITTI 数据集的GICP 算法的准确性和速度, 并且可以用来开发一个更稳健和高效的 SLMM 系统。