Cross-domain NER is a challenging task to address the low-resource problem in practical scenarios. Previous typical solutions mainly obtain a NER model by pre-trained language models (PLMs) with data from a rich-resource domain and adapt it to the target domain. Owing to the mismatch issue among entity types in different domains, previous approaches normally tune all parameters of PLMs, ending up with an entirely new NER model for each domain. Moreover, current models only focus on leveraging knowledge in one general source domain while failing to successfully transfer knowledge from multiple sources to the target. To address these issues, we introduce Collaborative Domain-Prefix Tuning for cross-domain NER (CP-NER) based on text-to-text generative PLMs. Specifically, we present text-to-text generation grounding domain-related instructors to transfer knowledge to new domain NER tasks without structural modifications. We utilize frozen PLMs and conduct collaborative domain-prefix tuning to stimulate the potential of PLMs to handle NER tasks across various domains. Experimental results on the Cross-NER benchmark show that the proposed approach has flexible transfer ability and performs better on both one-source and multiple-source cross-domain NER tasks. Codes will be available in https://github.com/zjunlp/DeepKE/tree/main/example/ner/cross.
翻译:在实际情景中,跨部门净减排是解决低资源问题的一项具有挑战性的任务。以往典型的解决方案主要是通过预先培训的语言模型(PLM)获得一个NER模型,其数据来自丰富的资源领域,并适应目标领域。由于不同领域实体类型之间的不匹配问题,以往的方法通常调整PLM的所有参数,最终为每个领域建立一个全新的NER模型。此外,目前的模型只侧重于在一个一般源领域利用知识,同时未能成功地将知识从多个来源转移到目标领域。为解决这些问题,我们采用了基于文本到文本的基因化PLMs的跨多语言模型(CP-NER)合作多功能化模式(PLMs)。具体地说,我们提出文本到文本的生成领域相关指导员,将知识转移到新的领域NER任务,而没有结构上的修改。我们使用冻结的PLMS并进行协作域前调整,以激发PLM在多个领域处理NER任务方面的潜力。跨网络基准实验结果显示,拟议的方法具有灵活的转让能力,并在现有的1-NER/M/MER/M/DR/D/DRUD/D/DRUDRBSY 和多源任务上进行更好的更新。