Composition is a key feature of differential privacy. Well-known advanced composition theorems allow one to query a private database quadratically more times than basic privacy composition would permit. However, these results require that the privacy parameters of all algorithms be fixed before interacting with the data. To address this, Rogers et al. introduced fully adaptive composition, wherein both algorithms and their privacy parameters can be selected adaptively. The authors introduce two probabilistic objects to measure privacy in adaptive composition: privacy filters, which provide differential privacy guarantees for composed interactions, and privacy odometers, time-uniform bounds on privacy loss. There are substantial gaps between advanced composition and existing filters and odometers. First, existing filters place stronger assumptions on the algorithms being composed. Second, these odometers and filters suffer from large constants, making them impractical. We construct filters that match the tightness of advanced composition, including constants, despite allowing for adaptively chosen privacy parameters. En route we also derive a privacy filter for approximate zCDP and approximate RDP. We also construct several general families of odometers. These odometers can match the tightness of advanced composition at an arbitrary, preselected point in time, or at all points in time simultaneously, up to a doubly-logarithmic factor. We obtain our results by leveraging recent advances in time-uniform martingale concentration. In sum, we show that fully adaptive privacy is obtainable at almost no loss, and conjecture that our results are essentially unimprovable (even in constants) in general.
翻译:不同隐私的特性。 众所周知的高级构成理论允许人们查询私人数据库的时间比基本隐私构成允许的时间要长得多。 然而, 这些结果要求所有算法的隐私参数在与数据互动之前都固定下来。 要解决这个问题, Rogers 等人 引入了完全适应性构成, 其中两种算法及其隐私参数都可以根据适应性选择。 作者引入了两种测量隐私的概率性对象: 隐私过滤器, 它为组合互动提供不同的隐私保障, 隐私计量表, 隐私损失的时间界限一致。 先进构成与现有常态过滤器和计量表之间存在巨大差距。 首先, 现有过滤器在与数据互动之前的算法上设置了更强的假设。 其次, 这些差数计和过滤器受大常数的影响, 使得它们不切实际操作。 我们建造的过滤器, 包括常数, 尽管允许根据适应性选择的隐私参数。 在路线上, 我们还为大约的 zCDP 和近似的 RDP 设置一个隐私过滤器。 我们还在最新时间计中设置了几个一般一般直系的直系家庭, 。 这些直径的精度值的精度 。 这些直值显示直径的精度系数的精度系数的精度在最近的精度的精度系数的精度系数中, 我们的精度计的精度计的精度的精度值的精度显示的精度的精度显示的精度, 。