Differential privacy (DP) provides a robust model to achieve privacy guarantees for released information. We examine the protection potency of sanitized multi-dimensional frequency distributions via DP randomization mechanisms against homogeneity attack (HA). HA allows adversaries to obtain the exact values on sensitive attributes for their targets without having to identify them from the released data. We propose measures for disclosure risk from HA and derive closed-form relationships between the privacy loss parameters in DP and the disclosure risk from HA. The availability of the closed-form relationships assists understanding the abstract concepts of DP and privacy loss parameters by putting them in the context of a concrete privacy attack and offers a perspective for choosing privacy loss parameters when employing DP mechanisms in information sanitization and release in practice. We apply the closed-form mathematical relationships in real-life datasets to demonstrate the assessment of disclosure risk due to HA on differentially private sanitized frequency distributions at various privacy loss parameters.


翻译:不同隐私(DP)提供了一个强有力的模式,以实现对发布信息的隐私保障。我们研究了通过DP随机随机处理机制保护被清洁的多维频率分布防止同源性攻击(HA)的有效性。HA允许对手获得目标敏感属性的确切值,而不必从发布的数据中识别这些特性。我们建议了由HA披露风险的措施,并从DP的隐私损失参数与HA披露风险之间得出封闭式关系。闭式关系的存在有助于理解DP的抽象概念和隐私损失参数,将其置于具体的隐私攻击中,并提供了一个在实际使用DP机制进行信息清洁和发布时选择隐私损失参数的视角。我们在现实生活数据集中应用封闭式数学关系,以展示对HA在不同隐私损失参数上差异化的私人保密频率分布对披露风险的评估。</s>

0
下载
关闭预览

相关内容

自然语言处理顶会NAACL2022最佳论文出炉!
专知会员服务
42+阅读 · 2022年6月30日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
专知会员服务
39+阅读 · 2020年9月6日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年4月28日
Arxiv
23+阅读 · 2022年2月4日
Arxiv
38+阅读 · 2021年8月31日
Arxiv
12+阅读 · 2020年12月10日
VIP会员
相关VIP内容
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员