Modern supervised learning neural network models require a large amount of manually labeled data, which makes the construction of domain-specific knowledge graphs time-consuming and labor-intensive. In parallel, although there has been much research on named entity recognition and relation extraction based on distantly supervised learning, constructing a domain-specific knowledge graph from large collections of textual data without manual annotations is still an urgent problem to be solved. In response, we propose an integrated framework for adapting and re-learning knowledge graphs from one coarse domain (biomedical) to a finer-define domain (oncology). In this framework, we apply distant-supervision on cross-domain knowledge graph adaptation. Consequently, no manual data annotation is required to train the model. We introduce a novel iterative training strategy to facilitate the discovery of domain-specific named entities and triples. Experimental results indicate that the proposed framework can perform domain adaptation and construction of knowledge graph efficiently.


翻译:现代监管的学习神经网络模型需要大量手工标签数据,这使得具体领域知识图的构建耗时费时费力。与此同时,尽管在远程监督的学习基础上对名称实体的识别和关系提取进行了大量研究,但从大量没有人工说明的文本数据收集中构建一个特定领域知识图仍然是一个亟待解决的问题。作为回应,我们提议了一个综合框架,用于从一个粗略领域(生物医学)到一个精细-定义域(肿瘤)对知识图进行修改和再学习。在这个框架内,我们应用了跨域知识图调整的远视。因此,不需要人工说明来培训模型。我们引入了一个新的迭代培训战略,以便利发现特定领域实体和三重数据。实验结果表明,拟议的框架可以有效地进行领域调整和构建知识图。</s>

0
下载
关闭预览

相关内容

通过学习、实践或探索所获得的认识、判断或技能。
因果图,Causal Graphs,52页ppt
专知会员服务
238+阅读 · 2020年4月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
7+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
7+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员