In this paper we show that ensemble Kalman inversion for linear inverse problems can equivalently be formulated as a stochastic low-rank approximation of Tikhonov regularization. This point of view allows us to introduce an alternative sampling scheme based on the Nystr\"om method that improves practical performance. Furthermore, we formulate an adaptive version of ensemble Kalman inversion where the sample size is coupled with the regularization parameter. We prove under standard assumptions that the proposed scheme yields an order optimal regularization method if the discrepancy principle is used as a stopping criterion.


翻译:在本文中,我们证明,对于线性反问题,共通的Kalman反向反向反向反向反向反向可被等同于Tikhonov正规化的随机低端近似值。 这一观点使我们能够采用基于Nystr\'om方法的替代抽样计划, 提高实际性能。 此外, 我们还在样本大小与正规化参数相结合的情况下, 开发了共通Kalman反向反向的适应性版本。 我们根据标准假设证明, 如果差异原则被用作停止标准, 则拟议方案将产生最优化的顺序规范化方法 。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
被忽略的Focal Loss变种
极市平台
29+阅读 · 2019年4月19日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
神经网络学习率设置
机器学习研究会
4+阅读 · 2018年3月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Learning the optimal regularizer for inverse problems
Arxiv
0+阅读 · 2021年6月11日
Arxiv
0+阅读 · 2021年6月9日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
被忽略的Focal Loss变种
极市平台
29+阅读 · 2019年4月19日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
神经网络学习率设置
机器学习研究会
4+阅读 · 2018年3月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员