We assess the accuracy of Bayesian polynomial extrapolations from small parameter values, x, to large values of x. We consider a set of polynomials of fixed order, intended as a proxy for a fixed-order effective field theory (EFT) description of data. We employ Bayesian Model Averaging (BMA) to combine results from different order polynomials (EFT orders). Our study considers two "toy problems" where the underlying function used to generate data sets is known. We use Bayesian parameter estimation to extract the polynomial coefficients that describe these data at low x. A "naturalness" prior is imposed on the coefficients, so that they are O(1). We Bayesian-Model-Average different polynomial degrees by weighting each according to its Bayesian evidence and compare the predictive performance of this Bayesian Model Average with that of the individual polynomials. The credibility intervals on the BMA forecast have the stated coverage properties more consistently than does the highest evidence polynomial, though BMA does not necessarily outperform every polynomial.


翻译:我们从小参数值x到大数值x的Bayesian多元外推法的准确性。 我们考虑一套固定顺序的多元系数,意在作为固定顺序有效实地理论(EFT)对数据描述的替代物。 我们采用Bayesian模型动画法(BMA),将不同顺序多数值(EFT 命令)的结果合并起来。 我们的研究考虑了两个“玩具问题”,因为人们知道用于生成数据集的基本功能。 我们使用Bayesian参数估计来提取以低x表示这些数据的多元系数。 先前对系数强制规定“自然性”,因此它们是O(1)。 We Bayesian-Model-Average 不同的多数值,根据Bayesian证据加权,比较Bayesian模型平均的预测性能和单个多数值的预测性能。 BMA 预报的可信度间隔比最高证据多数值要一致,尽管BMA 不一定超越每个多元数值。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
专知会员服务
18+阅读 · 2020年9月6日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
已删除
将门创投
18+阅读 · 2019年2月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
lightgbm algorithm case of kaggle(上)
R语言中文社区
8+阅读 · 2018年3月20日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Arxiv
0+阅读 · 2021年8月5日
Arxiv
0+阅读 · 2021年8月4日
Arxiv
0+阅读 · 2021年8月4日
Imitation by Predicting Observations
Arxiv
4+阅读 · 2021年7月8日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
已删除
将门创投
18+阅读 · 2019年2月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
lightgbm algorithm case of kaggle(上)
R语言中文社区
8+阅读 · 2018年3月20日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Top
微信扫码咨询专知VIP会员