We study the identifiability of the interaction kernels in mean-field equations for intreacting particle systems. The key is to identify function spaces on which a probabilistic loss functional has a unique minimizer. We prove that identifiability holds on any subspace of two reproducing kernel Hilbert spaces (RKHS), whose reproducing kernels are intrinsic to the system and are data-adaptive. Furthermore, identifiability holds on two ambient L2 spaces if and only if the integral operators associated with the reproducing kernels are strictly positive. Thus, the inverse problem is ill-posed in general. We also discuss the implications of identifiability in computational practice.


翻译:我们研究中外方程式中相互作用内核的可识别性,用于调节粒子系统。关键在于确定概率损失功能具有独特的最小化作用的功能空间。我们证明,两个复制内核的Hilbert空间(RKHS)的任何子空间都存在可识别性,这两个空间的再生产内核是系统固有的,是数据适应性的。此外,两个周围L2空间的可识别性只有与再生产内核相关的整体操作器是绝对肯定的,而且只有与再生产内核相关的整体操作器是绝对肯定的,才能存在。因此,反面问题一般不正确。我们还讨论了计算实践中的可识别性的影响。

0
下载
关闭预览

相关内容

专知会员服务
79+阅读 · 2021年5月4日
专知会员服务
76+阅读 · 2021年3月16日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Randomized Overdrive Neural Networks
Arxiv
0+阅读 · 2021年8月4日
Arxiv
0+阅读 · 2021年8月4日
VIP会员
相关VIP内容
专知会员服务
79+阅读 · 2021年5月4日
专知会员服务
76+阅读 · 2021年3月16日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员