Wasserstein-Fisher-Rao (WFR) distance is a family of metrics to gauge the discrepancy of two Radon measures, which takes into account both transportation and weight change. Spherical WFR distance is a projected version of WFR distance for probability measures so that the space of Radon measures equipped with WFR can be viewed as metric cone over the space of probability measures with spherical WFR. Compared to the case for Wasserstein distance, the understanding of geodesics under the spherical WFR is less clear and still an ongoing research focus. In this paper, we develop a deep learning framework to compute the geodesics under the spherical WFR metric, and the learned geodesics can be adopted to generate weighted samples. Our approach is based on a Benamou-Brenier type dynamic formulation for spherical WFR. To overcome the difficulty in enforcing the boundary constraint brought by the weight change, a Kullback-Leibler (KL) divergence term based on the inverse map is introduced into the cost function. Moreover, a new regularization term using the particle velocity is introduced as a substitute for the Hamilton-Jacobi equation for the potential in dynamic formula. When used for sample generation, our framework can be beneficial for applications with given weighted samples, especially in the Bayesian inference, compared to sample generation with previous flow models.
翻译:Vasserstein-Fisher-Rao(WFR)距离是衡量两种雷达测量方法差异的一组指标,其中考虑到运输和重量的变化。光学WFR距离是一个预测的WFR距离版本,用来测量概率,这样可以将配备WFFR的Radon测量器空间视为球性WFR的概率测量空间的测量锥体。与瓦瑟斯坦距离相比,对球性WFR下大地测量学的理解不那么清楚,而且仍然是一个持续的研究焦点。在本文中,我们开发了一个深层次学习框架,以根据球性WFR指标和重量的变化计算大地测量数据,并且可以采用学习的地球FFFR(WFR)距离的预测版本,用于测量概率测量。我们的方法是以贝纳穆-Brenier型的动态测量器空间测量器空间测量器的空间。与瓦瑟斯坦(WFFFFFFR)距离相比,对球性地球地表下大地测量学的理解并不那么清楚,而且仍然是一个持续的研究焦点。此外,我们在成本函数中引入了一个深层次学框架,用新的固定化术语,使用粒子样本模型来计算模型,特别是以模拟模型模型来模拟模型来取代我们生成的模型的模型,可以用于生成的模型。