In this article we develop a method for performing post hoc inference of the False Discovery Proportion (FDP) over multiple contrasts of interest in the multivariate linear model. To do so we use the bootstrap to simulate from the distribution of the null contrasts. We combine the bootstrap with the post hoc inference bounds of Blanchard (2020) and prove that doing so provides simultaneous asymptotic control of the FDP over all subsets of hypotheses. This requires us to demonstrate consistency of the multivariate bootstrap in the linear model, which we do via the Lindeberg Central Limit Theorem, providing a simpler proof of this result than that of Eck (2018). We demonstrate, via simulations, that our approach provides simultaneous control of the FDP over all subsets and is typically more powerful than existing, state of the art, parametric methods. We illustrate our approach on functional Magnetic Resonance Imaging data from the Human Connectome project and on a transcriptomic dataset of chronic obstructive pulmonary disease.
翻译:在文章中,我们针对多变量线性模型的多种利益对比,制定了对假发现比例(FDP)进行事后临时推断的方法。为了这样做,我们用靴子陷阱模拟无反差分布。我们把靴子陷阱与Blanchard(2020年)的后特设推断界限结合起来,并证明这样做能同时对假说的所有子集提供FDP的被动控制。这要求我们通过Lindeberg Central Limit Sorem来证明线性模型中的多变量靴子陷阱的一致性,我们通过Lindeberg Central Limit Sorem来提供比Eck(2018年)更简单的证明这一结果的证据。我们通过模拟来证明,我们的方法能够同时控制FDP的所有子集,而且通常比现有的、艺术现状、参数方法更强大。我们介绍了我们从人类连接网项目和慢性阻塞性肺病的定型数据集中对磁共振成像成像数据的方法。