How to build an accurate reduced order model (ROM) for multidimensional time dependent partial differential equations (PDEs) is quite open. In this paper, we propose a new ROM for linear parabolic PDEs. We prove that our new method can be orders of magnitude faster than standard solvers, and is also much less memory intensive. Under some assumptions on the problem data, we prove that the convergence rates of the new method is the same with standard solvers. Numerical experiments are presented to confirm our theoretical result.


翻译:如何为多维时间依赖部分差异方程(PDEs)构建一个精确的减序模型(ROM) 。 在本文中,我们建议为线性抛物线式 PDEs 建立一个新的 ROM 。 我们证明我们的新方法可以比标准求解器更快的量级, 也比标准求解器要少得多。 根据对问题数据的一些假设, 我们证明新方法的趋同率与标准求解器相同。 提供了数字实验来证实我们的理论结果 。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年10月27日
Arxiv
0+阅读 · 2022年10月27日
Arxiv
0+阅读 · 2022年10月27日
VIP会员
相关资讯
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员