We study first-order logic (FO) over the structure consisting of finite words over some alphabet $A$, together with the (non-contiguous) subword ordering. In terms of decidability of quantifier alternation fragments, this logic is well-understood: If every word is available as a constant, then even the $\Sigma_1$ (i.e., existential) fragment is undecidable, already for binary alphabets $A$. However, up to now, little is known about the expressiveness of the quantifier alternation fragments: For example, the undecidability proof for the existential fragment relies on Diophantine equations and only shows that recursively enumerable languages over a singleton alphabet (and some auxiliary predicates) are definable. We show that if $|A|\ge 3$, then a relation is definable in the existential fragment over $A$ with constants if and only if it is recursively enumerable. This implies characterizations for all fragments $\Sigma_i$: If $|A|\ge 3$, then a relation is definable in $\Sigma_i$ if and only if it belongs to the $i$-th level of the arithmetical hierarchy. In addition, our result yields an analogous complete description of the $\Sigma_i$-fragments for $i\ge 2$ of the pure logic, where the words of $A^*$ are not available as constants.
翻译:我们研究一阶逻辑(FO), 其结构由某些字母的限定词组成, 美元为A$, 加上( 非连续的) 子字排序。 关于量化的交替性碎片的可变性, 这个逻辑是十分理解的: 如果每个单吨字母( 和一些辅助的前提)都有常数, 那么即使$\ sigma_ 1美元( 即存在) 零散也是不可变数的。 但是, 到现在为止, 对量化的变换碎片的表达性知之甚少 : 例如, 存在性碎片的不可变现性证明依赖于diopistantine 方程式的可变化性, 并且仅显示单吨字母字母字母( 和一些辅助的前提) 的可递增语言是可变的。 我们显示, 如果 $+% 3 美元, 那么一个关系在存续成美元的情况下, 美元和 $ 美元 的常数只有可变数 $ 。 这意味着所有碎片的 $\ Sigma_ $ $ 美元 的纯值, 如果 AS_ 3 laphilal dequal deal deal dequal deal lax $, 如果 $, 如果 laus $, lax lax $, lax lax $, 那么 $, lax $, 那么 lax
Alphabet is mostly a collection of companies. This newer Google is a bit slimmed down, with the companies that are pretty far afield of our main internet products contained in Alphabet instead.https://abc.xyz/