Learning multi-agent dynamics is a core AI problem with broad applications in robotics and autonomous driving. While most existing works focus on deterministic prediction, producing probabilistic forecasts to quantify uncertainty and assess risks is critical for downstream decision-making tasks such as motion planning and collision avoidance. Multi-agent dynamics often contains internal symmetry. By leveraging symmetry, specifically rotation equivariance, we can improve not only the prediction accuracy but also uncertainty calibration. We introduce Energy Score, a proper scoring rule, to evaluate probabilistic predictions. We propose a novel deep dynamics model, Probabilistic Equivariant Continuous COnvolution (PECCO) for probabilistic prediction of multi-agent trajectories. PECCO extends equivariant continuous convolution to model the joint velocity distribution of multiple agents. It uses dynamics integration to propagate the uncertainty from velocity to position. On both synthetic and real-world datasets, PECCO shows significant improvements in accuracy and calibration compared to non-equivariant baselines.
翻译:多试剂动态是一个核心的人工智能问题,在机器人和自主驾驶中应用广泛。虽然大多数现有工作都侧重于确定性预测,但为量化不确定性和评估风险而提出概率预测对于下游决策任务,如运动规划和避免碰撞等,是关键所在。多试剂动态往往包含内部对称。通过利用对称,特别是旋转等差,我们不仅可以提高预测的准确性,还可以提高不确定性校准。我们引入了能源评分这一适当的评分规则,以评价概率预测。我们提出了一个新的深层次动态模型,即对多试剂轨迹进行概率预测的概率不均匀连续演(PECCO)。PECCO将静态连续演进扩展为多试剂联合速度分布的模型。它利用动态集成来从速度到位置的不确定性。在合成和现实世界数据集上,PECCO显示与非等值基线相比,准确性和校准性显著提高。