The prediction of financial markets is a challenging yet important task. In modern electronically-driven markets, traditional time-series econometric methods often appear incapable of capturing the true complexity of the multi-level interactions driving the price dynamics. While recent research has established the effectiveness of traditional machine learning (ML) models in financial applications, their intrinsic inability to deal with uncertainties, which is a great concern in econometrics research and real business applications, constitutes a major drawback. Bayesian methods naturally appear as a suitable remedy conveying the predictive ability of ML methods with the probabilistically-oriented practice of econometric research. By adopting a state-of-the-art second-order optimization algorithm, we train a Bayesian bilinear neural network with temporal attention, suitable for the challenging time-series task of predicting mid-price movements in ultra-high-frequency limit-order book markets. We thoroughly compare our Bayesian model with traditional ML alternatives by addressing the use of predictive distributions to analyze errors and uncertainties associated with the estimated parameters and model forecasts. Our results underline the feasibility of the Bayesian deep-learning approach and its predictive and decisional advantages in complex econometric tasks, prompting future research in this direction.
翻译:对金融市场的预测是一项具有挑战性但却很重要的任务。在现代电子驱动的市场中,传统的时间序列计量经济学方法似乎往往无法捕捉驱动价格动态的多层次互动的真正复杂性。虽然最近的研究已经确立了传统机器学习模型在金融应用中的有效性,但它们内在没有能力应对不确定性,这是计量经济学研究和实际商业应用中的一项极大关切,是一个重大缺陷。贝叶斯方法自然地被视为一种适当的补救办法,通过进行一种最先进的第二阶优化算法,传达ML方法的预测能力,从而显示ML方法与经济计量研究的概率性做法的预测能力。我们通过采用一种最先进的第二阶优化算法,来培训一个具有时间性、适合预测超高频定序书市场中中的价格变化的Bayesian双线神经网络。我们通过使用预测性分布法分析与估计参数和模型预测相关的错误和不确定性,彻底比较了我们的Bayesian模型模式与传统的ML替代方法,解决了使用预测性分布法分析与估计性参数和模型预测性预测性预测性参数和预测性预测性预测性参数和模型预测性预测性的方法。我们的结果突出表明了Bayesian深海深层深入研究方法的可行性,以及这种预测性研究方法的未来、预测性研究、预测性、预测性和决定优势和决定优势。