In this paper we present a novel method, $\textit{Knowledge Persistence}$ ($\mathcal{KP}$), for faster evaluation of Knowledge Graph (KG) completion approaches. Current ranking-based evaluation is quadratic in the size of the KG, leading to long evaluation times and consequently a high carbon footprint. $\mathcal{KP}$ addresses this by representing the topology of the KG completion methods through the lens of topological data analysis, concretely using persistent homology. The characteristics of persistent homology allow $\mathcal{KP}$ to evaluate the quality of the KG completion looking only at a fraction of the data. Experimental results on standard datasets show that the proposed metric is highly correlated with ranking metrics (Hits@N, MR, MRR). Performance evaluation shows that $\mathcal{KP}$ is computationally efficient: In some cases, the evaluation time (validation+test) of a KG completion method has been reduced from 18 hours (using Hits@10) to 27 seconds (using $\mathcal{KP}$), and on average (across methods & data) reduces the evaluation time (validation+test) by $\approx$ $\textbf{99.96}\%$.
翻译:在本文中,我们提出了一个新颖的方法,即$textit{knowledge Persistence}$(mathcal{KP}$),用于对知识图表(KG)完成方法进行快速评估。目前基于排名的评价在KG的大小上是四倍的,导致评价时间过长,并因此产生高碳足迹。$mathcal{KP}通过表层数据分析来代表KG完成方法的表层学,具体地使用持久性同质分析。持久性同质学的特征允许用$mathcal{KP}$来评估KG完成质量,只看一小部分数据。标准数据集的实验结果显示,拟议的指标与等级(Hits@N、MR、MRR)高度相关。 绩效评价表明,$mathcal{KP}在计算上效率很高:在某些情况下,KG完成方法的评价时间(valation times@10)已经从18小时(使用$=10秒(使用$mathcal_KP})减少到27秒(使用$=xxxxxxxxxxxx),并降低平均评估方法(xxxx)。