Handling trust is one of the core requirements for facilitating effective interaction between the human and the AI agent. Thus, any decision-making framework designed to work with humans must possess the ability to estimate and leverage human trust. In this paper, we propose a mental model based theory of trust that not only can be used to infer trust, thus providing an alternative to psychological or behavioral trust inference methods, but also can be used as a foundation for any trust-aware decision-making frameworks. First, we introduce what trust means according to our theory and then use the theory to define trust evolution, human reliance and decision making, and a formalization of the appropriate level of trust in the agent. Using human subject studies, we compare our theory against one of the most common trust scales (Muir scale) to evaluate 1) whether the observations from the human studies match our proposed theory and 2) what aspects of trust are more aligned with our proposed theory.
翻译:处理信任是促进人类和AI代理人之间有效互动的核心要求之一。 因此,任何旨在与人类合作的决策框架都必须具备估算和利用人类信任的能力。 在本文件中,我们提出了一个基于精神模型的信任理论,不仅可以用来推断信任,从而提供心理或行为信任推断方法的替代方法,还可以用作任何具有信任意识的决策框架的基础。 首先,我们根据我们的理论引入什么信任手段,然后利用理论来定义信任的演变、人类依赖和决策,并正式确定对代理人的适当信任水平。 我们利用人类主题研究,将我们的理论与最普通的信任规模(穆尔比例)中的某个尺度(穆尔比例)进行比较,以评估1)人类研究的观察是否与我们提议的理论和2)信任的哪些方面更符合我们提议的理论。