Decoder diversity is a powerful error correction framework in which a collection of decoders collaboratively correct a set of error patterns otherwise uncorrectable by any individual decoder. In this paper, we propose a new approach to design the decoder diversity of finite alphabet iterative decoders (FAIDs) for Low-Density Parity Check (LDPC) codes over the binary symmetric channel (BSC), for the purpose of lowering the error floor while guaranteeing the waterfall performance. The proposed decoder diversity is achieved by training a recurrent quantized neural network (RQNN) to learn/design FAIDs. We demonstrated for the first time that a machine-learned decoder can surpass in performance a man-made decoder of the same complexity. As RQNNs can model a broad class of FAIDs, they are capable of learning an arbitrary FAID. To provide sufficient knowledge of the error floor to the RQNN, the training sets are constructed by sampling from the set of most problematic error patterns - trapping sets. In contrast to the existing methods that use the cross-entropy function as the loss function, we introduce a frame-error-rate (FER) based loss function to train the RQNN with the objective of correcting specific error patterns rather than reducing the bit error rate (BER). The examples and simulation results show that the RQNN-aided decoder diversity increases the error correction capability of LDPC codes and lowers the error floor.


翻译:解码器多样性是一个强大的错误校正框架, 在其中收集解码器, 合作校正一套由单个解码器无法校正的错误模式。 在本文中, 我们提出一种新的方法, 设计低密度对称频道( BSC) 的低密度对称频道( LDPC) 定字母迭代解码器( FAIDs) 代码的解码器多样性, 目的是降低差错底层, 同时保证瀑布的性能。 提议的解码多样性是通过培训一个反复量化的神经网络( RQNNN) 来学习/ 设计 FAIDs 。 我们第一次展示了一个机器学解码解码器在性能上能够超过相同复杂性的人为解码代码。 由于 RQNPs 可以建模广泛的 FAIDs 类别。 为了向 RQNN 提供对错误底线的足够了解, 培训组是通过从一组最有问题的错误模式( 陷阱) 进行抽样来构建的。 与现有方法相比, 机器学得的解码解码解码解码解码解码解码解码解码码器可以超越 LDRDRDRDRDRDRFDRFDFDFDR 的计算法函数, 我们以降低的错误函数显示具体的错误函数, 的错误法则以降低损失率的错误函数, 的错误函数, 。

0
下载
关闭预览

相关内容

【图神经网络导论】Intro to Graph Neural Networks,176页ppt
专知会员服务
125+阅读 · 2021年6月4日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
154+阅读 · 2020年5月26日
可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
129+阅读 · 2020年5月14日
Uber AI NeurIPS 2019《元学习meta-learning》教程,附92页PPT下载
专知会员服务
112+阅读 · 2019年12月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Jointly Improving Summarization and Sentiment Classification
黑龙江大学自然语言处理实验室
3+阅读 · 2018年6月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年6月27日
Arxiv
12+阅读 · 2021年5月3日
Arxiv
6+阅读 · 2018年2月28日
Arxiv
7+阅读 · 2018年1月10日
Arxiv
3+阅读 · 2017年3月8日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Jointly Improving Summarization and Sentiment Classification
黑龙江大学自然语言处理实验室
3+阅读 · 2018年6月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Top
微信扫码咨询专知VIP会员